Part Number Hot Search : 
013TR DF15005 2SD88205 LD105 BU180A 15004 15011 GP7NC6
Product Description
Full Text Search
 

To Download BUL642D2 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 BUL642D2 High Speed, High Gain Bipolar NPN Transistor with Integrated Collector-Emitter and Built-in Efficient Antisaturation Network
The BUL642D2 is a state-of-the-art High Speed High Gain Bipolar Transistor (H2BIP). Tight dynamic characteristics and lot to lot minimum spread (150 ns on storage time) make it ideally suitable for Light Ballast Application. A new development process brings avalanche energy capability, making the device extremely rugged.
Features
http://onsemi.com
3 AMPERES 825 VOLTS 75 WATTS POWER TRANSISTOR
* Low Base Drive Requirement * High Peak DC Current Gain (55 Typical) @ IC = 300 mA/5 V * Extremely Low Storage Time Min/Max Guarantees Due to the * * * * *
H2BIP Structure which Minimizes the Spread Integrated Collector-Emitter Free Wheeling Diode Fully Characterized Dynamic VCEsat "Six Sigma" Process Providing Tight and Reproducible Parameter Spreads Avalanche Energy 20 mJ Typical Capability Pb-Free Package is Available*
MARKING DIAGRAM
4
TO-220AB CASE 221A STYLE 1 1 2
BUL642D2G AYWW
3
BUL642D2 A Y WW G
= Device Code = Assembly Location = Year = Work Week = Pb-Free Package
ORDERING INFORMATION
Device BUL642D2 BUL642D2G Package TO-220 TO-220 (Pb-Free) Shipping 50 Units/Rail 50 Units/Rail
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. 1
(c) Semiconductor Components Industries, LLC, 2005
August, 2005 - Rev. 1
Publication Order Number: BUL642D2/D
BUL642D2
MAXIMUM RATINGS
Rating Collector-Emitter Sustaining Voltage Collector-Base Breakdown Voltage Emitter-Base Voltage Collector Current Base Current - Continuous - Peak (Note 1) - Continuous - Peak (Note 1) Symbol VCEO VCES VEBO IC ICM IB IBM PD TJ, Tstg Value 440 825 11 3.0 8.0 2.0 4.0 75 0.6 -65 to +150 Unit Vdc Vdc Vdc Adc Adc W W/C C
*Total Device Dissipation @ TC = 25C *Derate above 25C Operating and Storage Temperature
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.
TYPICAL GAIN
Rating Typical Gain @ IC = 1 A, VCE = 2 V Typical A, VCE = 1 V Symbol hFE hFE Value 45 50 Unit - -
THERMAL CHARACTERISTICS
Characteristic Thermal Resistance, Junction-to-Case Thermal Resistance, Junction-to-Ambient Maximum Lead Temperature for Soldering Purposes: 1/8 in. from Case for 5 seconds 1. Pulse Test: Pulse Width = 5.0 ms, Duty Cycle = 10% Symbol RqJC RqJA TL Value 1.6 62.5 260 Unit C/W C/W C
http://onsemi.com
2
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII III I I I I I I II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I I I I I I I I I I I IIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I III I I I I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I I II I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I III I I I I I I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I II I I I I III I I I I I IIIIIIIII IIIIIIIIII II I IIIIIIIII IIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIII I I I II I I I IIII I II I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I IIIIIIIII IIIIIIIIIIIIIIIIIIII I II I I I I IIIIIIIIIIIIIIIIIIIIIII I I IIIIIIIII IIIIIIIIII I I II I I II I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I I IIII I IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I III I I I I I I II I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII III I I I I I I II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I I I I I I I I I I I IIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII II III I I I I I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I II I II I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I I III I I I I I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I I II I I II I II I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I
DYNAMIC CHARACTERISTICS DYNAMIC SATURATION VOLTAGE
ELECTRICAL CHARACTERISTICS (TC = 25C unless otherwise noted)
SWITCHING CHARACTERISTICS: Resistive Load (D.C. 10%, Pulse Width = 70 ms)
DIODE CHARACTERISTICS
ON CHARACTERISTICS
OFF CHARACTERISTICS
Input Capacitance @ VEB = 8 V, f = 1 MHz
Output Capacitance @ Vcb = 10 V, IE = 0, f = 1 MHz
Current Gain Bandwidth IC = 0.5 Adc, VCE = 10 Vdc, f = 1 MHz
Fall Time
Storage Time
Rise Time
Delay Time
Forward Diode Voltage
Dynamic Saturation Voltage:
DC Current Gain
Collector-Emitter Saturation Voltage
Base-Emitter Saturation Voltage
Emitter-Cutoff Current
Collector Cutoff Current
Collector Cutoff Current
Emitter-Base Breakdown Voltage
Collector-Base Breakdown Voltage
Collector-Emitter Sustaining Voltage
IC = 1 Adc IB1 = 100 mAdc VCC = 300 Vdc
IC = 0.5 Adc IB1 = 50 mAdc VCC = 125 Vdc
(VCE = Rated VCES, VEB = 0)
(VCE = Rated VCEO, IB = 0)
Characteristic
@ 3 ms
@ 1 ms
@ 3 ms
@ 1 ms
(IC = 0.5 Adc, IB = 100 mAdc (IC = 1 Adc, IB = 0.2 Adc)
(IC = 0.5 Adc, IB = 50 mAdc) (IC = 2 Adc, IB = 0.2 Adc)
(IC = 0.5 Adc, VCE = 1 Vdc) (IC = 0.5 Adc, VCE = 3 Vdc)
(IC = 200 mA, L = 25 mH)
(VEB = 10 Vdc, IC = 0)
http://onsemi.com
@ TC = 25C @ TC = 25C @ TC = 125C @ TC = 25C @ TC = 25C @ TC = 125C @ TC = 25C @ TC = 125C @ TC = 25C @ TC = 125C
BUL642D2
IB2 = 500 mA
(IEC = 0.5 Adc) (IEC = 1.0 Adc)
VCC = 125 V
IC = 0.5 Adc
IB1 = 45 mA
(ICBO = 1 mA)
(IEBO = 1 mA)
3 VCEO(sus) VCE(dsat) Symbol VCE(sat) VBE(sat) VCBO VEBO ICEO IEBO ICES VEC Cob hFE Cib fT td ts tr tf Min 825 440 16 18 11 - - - - - - - - - - - - - - - - - - - - - - - - - - Typ 160 500 0.4 0.5 0.8 1.0 1.0 3.0 4.5 10 0.2 1.3 2.0 5.0 60 70 13 - - - - - - - - - - - - - - 100 1000 200 1000 1400 1100 Max 400 100 150 1.5 2.0 0.5 1.5 1.1 1.5 - - - - - - - - - - - - - - 1000 600 mAdc mAdc mAdc MHz Unit Vdc Vdc Vdc Vdc Vdc pF pF ns ns ns V - V ms
BUL642D2
100 100
hFE, DC CURRENT GAIN
hFE, DC CURRENT GAIN
125C -20C 10 25C
25C -20C 10 125C
VCE = 5 V 1.0 0.01
0.1
1
10
VCE = 5 V 1.0 0.01
0.1
1
10
IC, COLLECTOR CURRENT (AMP)
IC, COLLECTOR CURRENT (AMP)
Figure 1. DC Current Gain
Figure 2. DC Current Gain
10 IC = 2A VCE(sat), VOLTAGE (V) IC = 4 A VCE(sat), VOLTAGE (V) IC = 5 A IC = 1 A
10
1.0
125C
1.0
-20C 0.1
IC = 3 A IC = 500 mA
25C IC/IB = 5.0 0.1 1.0 10 0.01 0.01 0.1 1 10 0.1 0.01
IB, BASE CURRENT (mA)
IC, COLLECTOR CURRENT (AMP)
Figure 3. Collector Saturation Region
Figure 4. Collector-Emitter Saturation Voltage
10
10
VCE, VOLTAGE (V)
25C
VCE, VOLTAGE (V)
1.0
125C -20C
1.0 125C
IC/IB = 10 0.1 0.01 0.1 1.0 10 0.1 0.01
-20C 0.1
25C 1.0
IC/IB = 20 10
IC, COLLECTOR CURRENT (AMP)
IC, COLLECTOR CURRENT (AMP)
Figure 5. Collector-Emitter Saturation Voltage http://onsemi.com
4
Figure 6. Collector-Emitter Saturation Voltage
BUL642D2
10 10
Vbe, VOLTAGE (V)
Vbe, VOLTAGE (V)
-20C 1.0
-20C 1.0
25C 0.1
125C
125C 25C IC/IB = 5.0 0.1 0.01 IC/IB = 10 0.01 0.01
0.1
1.0
10
0.1
1.0
10
IC, COLLECTOR CURRENT (AMP)
IC, COLLECTOR CURRENT (AMP)
Figure 7. Base-Emitter Saturation Voltage
Figure 8. Base-Emitter Saturation Voltage
10 FORWARD DIODES VOLTAGE (V)
10
-20C Vbe, VOLTAGE (V) 1.0
1.0
25C 125C
25C 0.1
125C
IC/IB = 20 0.01 0.01
0.1 0.1 1.0 10 0.01 0.1 1.0 10 IC, COLLECTOR CURRENT (AMP) REVERSE EMITTER-COLLECTOR (AMP)
Figure 9. Base-Emitter Saturation Voltage
Figure 10. Forward Diode Voltage
1000 Cib C, CAPACITANCE (pF)
10000 Ib2 = IC/2 @ 125C
1000 100 Cob T, TIME (mS)
Ib2 = IC @ 125C
100
Ib2 = IC @ 25C Ib2 = IC/2 @ 25C VCC = 125 V, Pw = 100 mS, G = 10 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5
10 1.0
10 10 100
Vr, REVERSE VOLTAGE (V)
Figure 11. Capacitance http://onsemi.com
5
Figure 12. Resistive Switch Time, Storage Time TON
BUL642D2
3.0 VCC = 125 V, Pw = 100 mS, G = 10 650 Ib2 = IC/2 @ 125C T, TIME (mS) T, TIME (mS) 2.0 550 450 350 I = I /2 @ 25C 250 b2 C 150 0 0.1 Ib2 = IC @ 25C 0.3 0.5 0.7 0.9 1.1 1.3 1.5 50 Ib2 = IC @ 125C 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 Ib2 = IC @ 25C 750 Ib2 = IC/2 @ 125C VCC = 125 V, Pw = 100 mS, G = 10
Ib2 = IC @ 125C 1.0 Ib2 = IC/2 @ 25C
IC, COLLECTOR CURRENT (AMP)
IC, COLLECTOR CURRENT (AMP)
Figure 13. Resistive Switch Time, Storage Time
Figure 14. Resistive Switch Time, Fall Time
100 IC, COLLECTOR CURRENT (AMPS) 10 ms POWER DERATING FACTOR
1.0 SECOND BREAKDOWN DERATING
10
5 ms
1 ms
1 ms
0.8
1.0
DC
0.6
0.4
0.1
0.2 THERMAL DERATING 0
0.01 10 100 VCE, COLLECTOR-EMITTER VOLTAGE (V) 1000
20
40
60
80
100
120
140
160
TC, CASE TEMPERATURE (C)
Figure 15.
Figure 16. Power Derating
There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 15 is based on TC = 25C; Tj(pk) is variable depending on power level. Second breakdown pulse limits do not derate like
thermal limitations. Allowable current at the voltages shown on Figure 10 may be found at any case temperature by using the appropriate curve on Figure 16. Tj(pk) may be calculated from the data in Figure 18. At any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.
http://onsemi.com
6
BUL642D2
Energy
VCE
IC
NPD CHARACTERIZATION LAB
Figure 17. Typical Avalanche Energy Test/Waveforms
1 b r(t) TRANSIENT THERMAL RESISTANCE (NORMALIZED)
0.1
P(pk)
t2 DUTY CYCLE, D = t1/t2 0.01 0.01 0.1 1 t, TIME (ms) 10
t1
RqJC(t) = r(t) RqJC RqJC = 5 C/W MAX D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t1
100
1000
Figure 18. Thermal Response
http://onsemi.com
7
BUL642D2
PACKAGE DIMENSIONS
TO-220 CASE 221A-09 ISSUE AA
-T- B
4 SEATING PLANE NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. DIM A B C D F G H J K L N Q R S T U V Z INCHES MIN MAX 0.570 0.620 0.380 0.405 0.160 0.190 0.025 0.035 0.142 0.147 0.095 0.105 0.110 0.155 0.018 0.025 0.500 0.562 0.045 0.060 0.190 0.210 0.100 0.120 0.080 0.110 0.045 0.055 0.235 0.255 0.000 0.050 0.045 --- --- 0.080 BASE COLLECTOR EMITTER COLLECTOR MILLIMETERS MIN MAX 14.48 15.75 9.66 10.28 4.07 4.82 0.64 0.88 3.61 3.73 2.42 2.66 2.80 3.93 0.46 0.64 12.70 14.27 1.15 1.52 4.83 5.33 2.54 3.04 2.04 2.79 1.15 1.39 5.97 6.47 0.00 1.27 1.15 --- --- 2.04
F T S
C
Q
123
A U K
H Z L V G D N R J
STYLE 1: PIN 1. 2. 3. 4.
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative.
http://onsemi.com
8
BUL642D2/D


▲Up To Search▲   

 
Price & Availability of BUL642D2

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X